
14. Recursion

Recursive Spiral
spiral = (x) ->

 if x > 0

 fd x * 10

 rt 90

 spiral x - 1

 lt 90

 bk x * 10

pen red

spiral 10

Fractal Fern
speed 1000

fern = (x) ->

 if x > 1

 fd x

 rt 95

 fern x * .4

 lt 190

 fern x * .4

 rt 100

 fern x * .8

 lt 5

 bk x

pen green

fern 50

Koch Snowflake
speed Infinity

flake = (x) ->

 if x < 3 then fd x

 else

 flake x / 3

 lt 60

 flake x / 3

 rt 120

 flake x / 3

 lt 60

 flake x / 3

pen 'path'

for s in [1..3]

 flake 150

 rt 120

fill 'azure strokeStyle navy'

Recursive functions refer to themselves, and they can achieve powerful

effects. Recursion is at the core of fractals, language, and reasoning.

Recursion as a Stack

Operationally, recursion works by stepping through a stack of work.

Consider the sequence as Spiral draws a shape and retraces it back.

spiral 10 sets x to 10
 rt 90; fd x * 10; spiral x - 1 ⇓ lt 90; bk x * 10 ⇑

 spiral 9 sets x to 9
 rt 90; fd x * 10; spiral x - 1 ⇓ lt 90; bk x * 10 ⇑

 spiral 8 sets x to 8
 rt 90; fd x * 10; spiral x - 1 ⇓ lt 90; bk x * 10 ⇑

 ... etc, until the base case spiral 0 ⇑

Each time spiral is called, it puts the previous call on hold and does the

smaller spiral. After the smaller spiral is done, it returns to finish work on

the bigger one. spiral 0 does nothing: that is called the base case.

The x at different levels are local variables that do not interfere with
each other. Each red box is a stack frame with its own "copy" of x .

Recursion as a Reduction

Conceptually, recursion reduces a problem to smaller cases. Consider

how Fern draws a large fern by assuming it can draw smaller ferns:

All fern does is draw a stem with three smaller ferns at the end. The

main caveat is that the reduction has a limit: it ends when x ≤ 1.

Both Spiral and Fern return the turtle to exactly the same position and
direction at the end of a function call. Maintaining an invariant like this

can make recursion much easier to understand.

⇒

